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Lagrangian properties of oceanic turbulent boundary layers were measured using
neutrally buoyant floats. Vertical acceleration was computed from pressure (depth)
measured on the floats. An average vertical vorticity was computed from the spin
rate of the float. Forms for the Lagrangian frequency spectra of acceleration, Φa(ω),
and the Lagrangian frequency spectrum of average vorticity are found using dimen-
sion analysis. The flow is characterized by a kinetic energy dissipation rate, ε, and a
large-eddy frequency, ω0. The float is characterized by its size. The proposed non-
dimensionalization accurately collapses the observed spectra into a common form.
The spectra differ from those expected for perfect Lagrangian measurements over
a substantial part of the measured frequency range owing to the finite size of the
float. Exact theoretical forms for the Lagrangian frequency spectra are derived from
the corresponding Eulerian wavenumber spectra and a wavenumber–frequency dis-
tribution function used in previous numerical simulations of turbulence. The effect of
finite float size is modelled as a spatial average. The observed non-dimensional accel-
eration and vorticity spectra agree with these theoretical predictions, except for the
high-frequency part of the vorticity spectrum, where the details of the float behaviour
are important, but inaccurately modelled. A correction to the exact Lagrangian ac-
celeration spectra due to measurement by a finite-sized float is thus obtained. With
this correction, a frequency range extending from approximately one decade below ω0

to approximately one decade into the inertial subrange can be resolved by the data.
Overall, the data are consistent with the proposed transformation from the Eulerian
wavenumber spectrum to the Lagrangian frequency spectrum. Two parameters, ε and
ω0, are sufficient to describe Lagrangian spectra from several different oceanic turbu-
lent flows. The Lagrangian Kolmogorov constant for acceleration, βa ≡ Φa/ε, has a
value between 1 and 2 in a convectively driven boundary layer. The analysis suggests
a Lagrangian frequency spectrum for vorticity that is white at all frequencies in the
inertial subrange and below, and a Lagrangian frequency spectrum for energy that is
white below the large-eddy scale and has a slope of −2 in the inertial subrange.

1. Introduction
The Lagrangian properties of turbulence, although important in understanding

turbulent dispersion, are rarely measured. Measurements of Lagrangian spectra, that
is frequency spectra of quantities following a water parcel, are particularly rare.

Dimensional analysis can give a first guess as to the expected forms for Lagrangian
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spectra. We first review the well-known analysis for the Eulerian wavenumber spec-
trum of turbulent velocity in the inertial subrange. For scales much smaller than
the forcing scales and much larger than the dissipation scales, Kolmogorov (1941)
predicted the existence of an inertial subrange, characterized by a turbulent kinetic
energy dissipation rate ε. The kinetic energy wavenumber spectrum has a form of
αε2/3k−5/3, where k is the wavenumber magnitude and α is a Kolmogorov constant.
In a recent review, Sreenivasan (1995) shows that modern data clearly support the
existence of the ‘-5/3’ spectrum and finds α = 1.5 ± 0.15 at high Reynolds number.
The turbulence energy spectrum at very high Reynolds number is often approximated
as

E(k) =

{
αε2/3k−5/3, k0 6 k 6 kη
0, k < k0 or k > kη,

(1.1)

where k is the wavenumber magnitude and details near the large-eddy scale, k−1
0 , and

the viscous dissipation (Kolmogorov) scale, k−1
η have been neglected.

Similar arguments have been used to predict Lagrangian frequency spectra. Through-
out this paper, the term ‘frequency’ will always mean ‘Lagrangian frequency’. In an
inertial subrange where the frequency spectrum depends only on frequency, ω, and
ε, Corrsin (1963) predicted a white vertical acceleration spectrum with a level pro-
portional to ε, i.e. Φa(ω) = βaε. Tennekes & Lumley (1972) predicted βa = 1.2 by
conserving energy in both the frequency and wavenumber domains and assuming the
relation ω = ε1/3k2/3 between frequency and wavenumber. They also suggested an ω2

(blue) acceleration spectrum for frequencies below the inertial subrange, i.e.

ΦTLa (ω) =

{
βaε(ω/ω0)

2 for ω 6 α1/2ω0

βaε for ω > α1/2ω0,
(1.2)

where ω0 = ε1/3k
2/3
0 is the frequency corresponding to the cutoff wavenumber of the

inertial subrange. Our definition of ω0 differs from theirs by a factor α1/2, where α is
the Kolmogorov constant defined above.

Previous studies have found a white acceleration frequency spectrum but with a
wide range of βa, 0.2–1.2. Using a Lagrangian renormalized approximation, Kaneda
(1993) derived a Lagrangian frequency spectrum in the inertial subrange with βa =
0.94. In their kinematic simulations of turbulence, Fung et al. (1992) found βa = 0.8
‘following a fluid particle’, and βa = 0.73 ‘moving with the large eddies’. Hanna (1981)
compared Lagrangian and Eulerian velocity measurements in a daytime atmospheric
boundary layer and found βa = 0.2, with large errors. Some of the variation in
these estimates of βa may be due to differences in definition. Fung et al. (1992)
(their equation (2.28)) and Kaneda (1993) (his equation (22)) appear to use two-sided
spectra, i.e. the velocity variance is

∫ ∞
−∞Φw(ω)dω, whereas Tennekes & Lumley (1972)

and Hanna (1981) use one-sided spectra, i.e. the velocity variance is
∫ ∞

0
Φw(ω) dω.

We prefer one-sided spectra, implying that the two Fung et al. (1992) estimates and
the Kaneda (1993) estimate should be doubled to 1.6, 1.46 and 1.8 respectively. The
Hanna (1981) paper and the associated data report (Hanna 1980) differ as to whether
radial or cyclic units are being used in the spectral computations. Our best guess is
that Hanna’s (1981) value should be multiplied by 2π to equal 1.26. These corrections,
which seem plausible but not certain, narrow the range for βa to between 1 and 2,
consistent with the range found in § 7 of this paper.

Lagrangian frequency spectra of vorticity, ζ, are rarely discussed in previous studies.
Naively assuming an inertial subrange in which the vorticity spectrum depends only
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on ω and ε yields a vorticity spectrum, βζω that is blue and independent of ε. In
this paper, we show that vorticity spectra are white in the inertial subrange. This
is dimensionally possible because another parameter, either the probe size or the
Kolmogorov scale, necessarily enters the analysis.

Lagrangian frequency spectra of turbulence, unlike Eulerian spectra, have rarely
been observed owing to instrumental difficulties. D’Asaro et al. (1996, hereafter re-
ferred to as DFOD) described a neutrally buoyant mixed layer float (MLF) designed
for Lagrangian measurements of oceanic turbulence. In a brief look at spectra, DFOD
found that both acceleration and vorticity spectra exhibited universal forms which
scaled with ε, implying inertial-subrange scaling. In this paper, we examine these
spectra in more detail.

We will analyse the data within the framework of homogeneous, statistically station-
ary turbulence theory. The Lagrangian frequency spectra and Eulerian wavenumber
spectra are projections of a joint Lagrangian frequency–Eulerian wavenumber spec-
trum, Φu(ω, k). Consider a Lagrangian trajectory, x0(t), and the coordinate system
xL = x−x0(t) that moves with it; Φu(ω, k) is defined in this moving coordinate system.
The velocity covariance Cu(r, τ) for a single velocity component u in this coordinate
system is

Cu(r, τ) = 〈u[t, xL(t)] u[t+ τ, xL(t+ τ) + r]〉, (1.3)

where 〈 〉 represents ensemble averaging and τ and r are time and spatial lags.
The Lagrangian frequency–Eulerian wavenumber velocity spectrum is defined as the
Fourier transform of Cu(r, τ), i.e.

Φu(ω, k) =

∫ ∞
0

dr

∫ ∞
0

dτCu(r, τ)e
i(k·r−ωτ), (1.4)

where k is the wavenumber vector and ω is the Lagrangian frequency. The integral
of Φu(ω, k) over wavenumber–frequency space equals the average variance of u in
physical space.

In the next two sections, we briefly describe the MLF configuration, sensors,
and measurements and show observed Lagrangian frequency spectra of vertical
acceleration and vorticity. These spectra appear to have universal shapes. In § 4, we
revisit the dimensional analysis adding the effect of finite float size. The Lagrangian
spectral forms are derived from (1.1) in § 5 where we construct a joint Lagrangian
frequency–Eulerian wavenumber spectrum for turbulence and model the averaging
effect of finite-sized floats. In § 6, we fit the derived acceleration spectrum to the
observed acceleration spectra, thus estimating ε and ω0 for each spectrum. We then
scale the observed acceleration and vorticity spectra by these parameters and show,
first, that the observed spectra have common shapes and, second, that these shapes
mostly agree with the model predictions. This allows us to identify the frequency
range in which instrumental effects are important and compensate for these effects in
the analysis. In § 7, βa is estimated from the spectral level and the buoyancy flux in a
convectively driven mixed layer. In the final two sections, we discuss the accuracy of
the models and summarize the results.

2. Instrumentation and measurements
Measurements of Lagrangian trajectories were made using Lagrangian floats

(MLF). Physically, the MLF consists of a 1.5 m long cylindrical hull and a 1.2 m
diameter perforated (42% hole area) drag screen (figure 1). The float measures its
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Figure 1. The mixed layer Lagrangian float.

own depth through pressure (1 Hz rate) and is acoustically tracked in the horizontal.
Temperature and stratification are measured every 5 s using thermistors on the top
and bottom of the float. The float has a large restoring moment which keeps it vertical
to within few degrees. The rotational motion of the float is coupled to that of the
water by the drag screen with a time constant of a few seconds. The coupling is due
to both the roughness of the screen and its radial ribs which act as vertical fins. The
spin rate of the float, measured by a compass every 5 s, gives an average vertical
vorticity of the water.

The MLF is not perfectly Lagrangian, for several reasons. First, it is much larger
than the Kolmogorov scale and can therefore, at best, follow the motion of a well-
defined volume of water surrounding it, rather than the motion of an individual
molecule. Second, the float’s density differs from that of the surrounding water and
it will therefore rise or fall relative to the water. We minimize the density difference
at fixed pressure and temperature by careful ballasting. Subsequent density changes
resulting from changes in the ambient pressure and temperature are minimized by
approximately matching the float’s compressibility and thermal expansion coefficients
to that of sea water. The large drag screen reduces the fall rate due to any residual
density difference to a few mm s−1 (see DFOD). Third, the float is asymmetrical. The
hydrodynamic force on the float is not directly opposed to the relative velocity of
the water, so the float can move in unexpected directions in the presence of strong
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Figure 2. Depth of floats deployed in a diurnally varying convective mixed layer over a 1 week
period. One trajectory is shown with a darker line. The average surface heat flux estimated from
meteorological instruments is plotted at the bottom. The average depth of the convective layer,
estimated from the depth of a very weak maximum in stratification measured from a vertical profiler
is shown by the shaded region.

shear. We have observed this behaviour using scale model floats in a laboratory
tank. Finally, since the float’s sensors are offset from its centre, they do not follow a
Lagrangian trajectory when the centre of the float does.

The Lagrangian accuracy of the floats has been tested by deploying them in flows
where the exact Lagrangian trajectories are well known. In linear surface waves,
pressure is constant along Lagrangian trajectories. DFOD describe measurements
made on a float deployed in a known surface wave field. Pressure fluctuations were
due only to the offset of the pressure sensor from the float’s centre with no evidence of
pressure fluctuations due to non-Lagrangian motion. The floats therefore accurately
filter out surface wave vertical velocities and can accurately measure vertical velocity
in the presence of surface waves. The surface wave and turbulent velocity signals can
be further separated since their dominant frequencies typically differ by more than an
order of magnitude. This is important in the upper ocean, where the surface gravity
wave velocity, O(1 m s−1), is much greater than the turbulent velocity, O(0.01 m s−1).

Internal waves can exist only for frequencies less than the buoyancy frequency N.
Temperature, θ, is nearly constant along the Lagrangian trajectories since the waves
are nearly adiabatic. DFOD describe data from a float deployed in the upper oceanic
thermocline. The vertical velocity spectrum falls by 4 orders of magnitude in the
octave higher than N, indicating that the vertical velocity is mostly due to internal
waves. The temperature fluctuations, θ′, were converted to cross-isothermal velocity
fluctuations using wc = (dθ′/dt)/(∂θ/∂z). The r.m.s. wc was 0.1 mm s−1, less than
2% of the r.m.s. vertical velocity. The floats are therefore highly Lagrangian in this
environment.

In a turbulent flow of finite vertical extent, Lagrangian trajectories should fill the
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turbulent region but avoid the surrounding laminar fluid. The surface mixed layer of
the ocean is such a flow. The trajectories of floats deployed in the mixed layer clearly
delineate the turbulent region in both convectively driven mixed layers (figure 2) and
wind-driven mixed layers (D’Asaro & Dairiki 1997).

In this paper we analyse data from 71 float deployments in a variety of highly
turbulent oceanic environments; 21 trajectories are from a convectively driven upper-
ocean mixed layer (figure 2), 36 are from a wind-driven mixed layer of similar depth,
and 14 are from highly turbulent weakly stratified tidal channels similar to those used
in the study by Grant, Stewart & Moilliet (1962). These data were selected from about
250 float deployments. Sections of trajectories were chosen to be from weakly stratified
environments, to exhibit nearly stationary statistics and to have vertical excursions
of at least 50 m. Most of the data excluded were taken in environments with strong
stratification or weak forcing, or involved floats which were poorly ballasted. Data
with anomalous spectral shapes were not intentionally excluded.

3. Observed spectra of vertical acceleration and vorticity
The pressure on the float measures its depth since pressure in the ocean is

highly hydrostatic. Vertical displacement, Z , is thus easily computed from pressure
(see § 2 for a discussion of the effects of surface waves, which are not hydro-
static). Vertical velocity was computed from the time derivative of displacement
and the vertical acceleration from the second derivative. The derivative at time i was
estimated from the first difference Zi − Zi+1. All spectra were corrected for the
response function of this operator. Vertical vorticity was estimated from compass
direction using a similar first difference modified to account for the 2π-periodicity of
direction.

Previous turbulence studies (Melville 1996) have shown strong intensification of
turbulence within a few metres of the ocean surface when the wind is blowing. The
float data show a similar increases in vorticity and acceleration variance very near
the surface. These produce large and rapid variations in these properties as the float
moves into and out of the surface layer. In this paper, we wish to study the more
homogeneous turbulence in the rest of the boundary layer and therefore need to
exclude the near-surface region. This is achieved using a maximum-overlap wavelet
method (Percival & Guttorp 1994). The acceleration and vorticity time series are
decomposed into a set of orthogonal wavelets, wij , each of which is compact in
both time and frequency. Thus acceleration is represented as a(t) =

∑
i,j aijwij(t). The

variance centred at frequency j and time i is a2
ij . The spectral density is the variance

divided by the appropriate frequency bandwidth; its time average is the frequency
spectrum. For the wind-driven and convective mixed layers, wavelet coefficients with
an average depth shallower than 15 m were excluded from the average, resulting
in a frequency spectrum that excludes near-surface data. The process is imperfect,
since the low-frequency wavelet estimates necessarily have little time resolution and
therefore include both near-surface and deep data. We hope this effect is small, since
the near-surface enhancement of turbulence appears primarily at high frequencies.
The resulting frequency spectra are shown in figures 3 and 4.

Vertical acceleration spectra have a large (3× 104) range in spectral level (figure 3)
corresponding, as will be shown, to a similarly large range in ε. The data fall into two
groups. The more energetic are from turbulent tidal channels (solid lines), and the less
energetic are from wind-forced (dotted lines) and convectively forced (dashed lines)
oceanic mixed layers. Despite the large range in energy level and type of forcing, the
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Figure 3. Lagrangian frequency spectra of vertical acceleration. Data from weakly stratified tidal
channels is shown by solid lines. Data from upper-ocean mixed layers is separated by cruise: data
from Tully ’92 is dashed, while data from Wecoma ’95 is dotted. The spectral estimate at the lowest
frequency in each spectrum has 2 degrees of freedom; this doubles at each successive frequency.
The 95% confidence limits with this dependence, starting at 2 degrees of freedom are shown at
the bottom of the figure. For clarity, several spectra are highlighted (thick solid lines), and the
approximate frequency band of the inertial subrange is labelled.

spectra have very similar shapes. We will show that the flat region at intermediate
frequencies in the acceleration spectrum is a piece of the Lagrangian inertial subrange.
The high-frequency limit of the range is set by the size of the float; the spectrum of
float motion falls below the inertial subrange level at high frequencies because the
float cannot follow water motions smaller than its own size. The low-frequency limit
is set by the large-eddy frequency, ω0. At frequencies well below ω0, the spectra have
a slope of approximately +2; vertical velocity is white as predicted by (1.2). At the
highest frequencies many acceleration spectra have a slope of +4, corresponding to a
white displacement spectrum. This is due to pressure sensor noise.

Vertical vorticity spectra show a smaller range of levels (figure 4) since, as will be
shown, they scale with ε1/3. All spectra have a similar shape. We will show that they
are white both in the inertial subrange and at low frequencies with no signature of
the large-eddy frequency, ω0. Thus the low-frequency limit of the inertial subrange
is not obvious from the spectrum. As with acceleration, the high-frequency limit of
the inertial subrange is set by the size of the float; the spectrum of float rotation
falls below the inertial subrange level for vertical vorticity because the float’s rotation
cannot follow vorticity fluctuations smaller than the size of the drag screen. The noise
level for vorticity, evident at frequencies greater than about 0.1 s−1, probably results
from surface wave accelerations that disturb the compass readings.
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Figure 4. As in figure 3, but for averaged vertical vorticity. Two spectra are highlighted
(thick solid lines) for clarity.

4. Dimensional analysis for finite sized floats
According to (1.1), oceanic turbulence has fluctuations with scales ranging from

the Kolmogorov scale k−1
η (a few millimetres for our data), to the thickness of the

turbulent layer, H ≈ 2πk−1
0 (50–100 m in our data). Exact Lagrangian trajectories

have fluctuations with these same scales. The float trajectories are smoother than the
true Lagrangian trajectory owing to the finite size of the float.

We seek to scale the measured Lagrangian spectra for acceleration and vorticity, ΦFa
and ΦFζ , as a function of frequency, ω. We assume that the turbulence is parameterized
by two parameters, ε and the large-eddy wavenumber k0, as in (1.1), and that
the float is characterized by scales L for acceleration and R for vorticity. These
dimensional parameters result in three non-dimensional frequencies: a large-eddy

frequency ω0 = ε1/3k
2/3
0 , and float-scale frequencies ωL = ε1/3L−2/3 and ωR = ε1/3R−2/3.

The Kolmogorov frequency, ωη = (ε/ν)1/2, does not enter the problem as it is assumed
to be much larger than the other frequencies.

At low frequencies, ω � ωL, we assume that the float size is unimportant and the
acceleration spectrum has the general form

ΦFa (ω) = βaεBa(ω/ω0). (4.1)

This is the ‘large-eddy’ scaling.

At higher frequencies, ω � ω0, we assume that the large-eddy properties are
unimportant. The Lagrangian frequency spectrum of the fluid depends only on ε and
thus obeys the inertial-subrange scalings from (1.2), Φa(ω) = βaε. The Lagrangian
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frequency spectrum measured by the float has the general form

ΦFa (ω) = βaεGa(ω/ωL), (4.2)

where Ga describes the effect of finite float size. We will call this ‘float-size’ scaling.
For ω � ωL, the float’s motion and the fluid’s motion are the same, Ga → 1, and the
float accurately measures the Lagrangian spectrum of the fluid. We will use the term
‘float inertial subrange’ for this region to distinguish it from the much larger fluid
inertial subrange. The float inertial subrange is marked on several spectra in figure 3.

A similar analysis yields forms for the vorticity spectrum. For ω � ωR , large-eddy
scaling applies, and the general form of the spectrum is

ΦFζ (ω) = βζωRBζ(ω/ω0). (4.3)

For ω � ω0, float-size scaling applies, and the general form of the spectrum is

ΦFζ (ω) = βζωRGζ(ω/ωR). (4.4)

Note that the float does not measure the true fluid vorticity but some average on
the scale of R, the drag screen radius. The wavenumber spectrum of vorticity is blue;
most of the variance is at the Kolmogorov scale. The smaller the float, the larger the
measured r.m.s. vorticity and spectral level. Only if the float is of the Kolmogorov
scale or smaller does its rotation rate measure the true fluid vorticity; otherwise the
measured vorticity is less than the true vorticity. Thus the float size is an important
parameter at all frequencies and appears, through ωR , in front of the shape functions
Bζ and Gζ in (4.3) and (4.4).

DFOD found empirical forms for (4.2) and (4.4) based on a subset of the data in
figures 3 and 4:

ΦFa (ω) = 1.8ε
[
1 + 0.17(ω/ωL)2

]−1
, (4.5)

ΦFζ (ω) = 1.26ωR
[
1 + 2(ω/ωR)2

]−1
, (4.6)

where L = 0.75 m (one half of the vertical length of the MLF) and R = 0.6 m (the
radius of the drag screen) are used in the definitions of ωL and ωR , respectively.
Equations (4.5) and (4.6) are written in a somewhat different form from those used
by DFOD.

5. Model Lagrangian spectra
We now attempt to predict the levels and shapes of the observed vertical accel-

eration and vorticity spectra. First, we use the approximate wavenumber spectra
of homogeneous isotropic turbulence (1.1). The details of the spectrum near the
Kolmogorov wavenumber are unimportant since the finite float size attenuates the
observed spectrum at a much larger scale. The details of the spectrum near the large-
eddy wavenumber are unimportant since the derived Lagrangian frequency spectrum
is insensitive to these. Second, we construct a model for the Lagrangian frequency–
Eulerian wavenumber spectrum (1.4), following the methods of Fung et al. (1992).
Third, we assume physical models for the averaging effects of the finite float size.
Model Lagrangian frequency spectra for vertical velocity, acceleration and vorticity
are then obtained by numerically integrating the frequency–wavenumber spectra over
wavenumbers. Empirical analytical approximations to the numerical solutions are
found and used in the subsequent data analysis.
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5.1. Wavenumber spectra for isotropic turbulence

For homogeneous isotropic turbulence, the Eulerian wavenumber spectrum of vertical
velocity and vorticity have the forms (Batchelor 1953)

Φw(k) =
E(k)

4πk4
(k2
x + k2

y), (5.1)

and

Φζ(k) =
E(k)

4πk2
(k2
x + k2

y). (5.2)

E(k) is given by (1.1), k is the wave vector, kx, ky , and kz are its components, and
k is the wavenumber magnitude. Wavenumber magnitude spectra are defined by
integrating the three-dimensional wavenumber spectrum over the spherical shell of
constant k:

Φw(k) = 2
3
E(k), (5.3)

and

Φζ(k) = k2Φw(k). (5.4)

Note that the velocity spectrum is red (k−5/3) in the inertial subrange so most of its
variance is at large scales, whereas the vorticity spectrum is blue (k1/3) so most of its
variance is at small scales. This fundamental difference implies that the finite float
size has quite different effects on vorticity and velocity spectra.

5.2. Float response

We assume that the float’s vertical acceleration, aF , is the vertical average of the
water’s vertical acceleration, a, over the float’s length. The water’s acceleration is
assumed to be unaffected by the float. Thus

aF (t) =

∫ L

−L
a[x(t), y(t), z(t) + δ, t]dδ, (5.5)

where the float’s path is [x(t), y(t), z(t), t]. Spectrally, this is expressed as a wavenum-
ber response function, Hw(k, L), relating the wavenumber spectrum of the water’s
acceleration, Φa, to that of the float, ΦFa :

ΦFa (k) = Φa(k)Hw(k, L), (5.6)

Hw(k, L) = sinc2(kzL), (5.7)

where kz is the vertical wavenumber, 2L is the length of the float, and sinc(x) =
sin(x)/x. Most of the acceleration of the water, and thus of the float, results from
pressure gradients which are accurately averaged by the float hull (DFOD). Equation
(5.7) is probably an accurate representation of these effects. More complex models of
the float response are considered in § 8.

The spin rate of the MLF is more complicated. The MLF rotates owing to the
frictional drag of the surrounding flow on the circular screen, particularly its radial
fins. The Reynolds number of the fins based on their height (1 cm) and a typical flow
past the screen (a few mm s−1) is of order 50, which is transitional between a linear
and quadratic drag law. If a linear drag law is used, a linear response model results.
This is probably not very accurate, but we use it because there are no easy alternatives.
In this case, the measured vertical vorticity is equal to the averaged circulation over
the drag screen. The wavenumber response function of the drag screen for vorticity
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is then

Hζ(k, R) =

[
8J2(khR)

k2
hR

2

]2

. (5.8)

Here, kh is the horizontal wavenumber component, R is the radius of the drag
screen, and J2 the Bessel function of the second kind. Equation (5.8) is certainly an
oversimplification, ignoring nonlinear drag and the effect of vorticity advection past
an imperfectly Lagrangian float. There is no reason to believe that it will produce
quantitatively accurate predictions. More complex linear models of the float response
are considered in § 8.

5.3. Transformation from Eulerian to Lagrangian spectra

For linear waves, the energy distribution in wavenumber and frequency is restricted by
dispersion, i.e. Φ(ω, k) = Φ(k)δ[ω −Ω(k)], where ω = Ω(k) is the dispersion relation.
For weakly nonlinear waves, Holloway (1983) suggested that the energy distribution
is spread about the linear dispersion curve, i.e. the δ-function broadens, and that the
amount of spreading increases with wavenumber.

Unlike waves, turbulence has no dispersion relation. However, there may still be a
general relationship between frequency and wavenumber. Fung et al. (1992) proposed
that ‘the energy at each wavenumber is spread over a range of frequencies around a
characteristic frequency’, ωk , with a distribution F(ω,ωk). They propose a Gaussian
form (their equation (2.13), the ‘KSIM’ model) which is asymmetric in frequency. We
express the same physics as a double Gaussian since we wish to have an expression
which is symmetric in frequency,

F(ω,ωk) =
1

(2π)1/2γωk

{
exp

[
− (ω − γ0ωk)

2

2γ2ω2
k

]
+ exp

[
− (ω + γ0ωk)

2

2γ2ω2
k

]}
, (5.9)

where ωk = ε1/3k2/3. The model has two parameters: γ0 scales the characteristic
frequency associated with wavenumber k, and γ scales the amount of spreading
(bandwidth) about this frequency. Since F only redistributes energy, conservation
of energy implies

∫ ∞
0
F(ω, k)dω = 1. Leslie (1973) suggests that the bandwidth is

comparable to the frequency in the inertial subrange, suggesting γ0 = 1 and γ = 1.
We follow this choice initially, but then, in § 9.2, investigate the effect of varying the
parameters. Nearly the same results are found for a double Gaussian, γ0 = 1, and a
single Gaussian, γ0 = 0.

According to this model, the energy at a fixed wavenumber k is distributed within
about 2ωk of the frequency ωk (figure 5a). Since ωk is proportional to k2/3, large (small-
k) eddies have long Lagrangian correlation time, i.e. a small frequency bandwidth,
and small eddies have a short correlation time. Energy at a fixed frequency ω comes
from a wide range of wavenumbers k (or ωk), with a peak at about 0.6 ω3/2ε−1/2 and
a long tail at higher wavenumbers (figure 5b).

5.4. Model spectra

We adopt the above concepts to construct the Lagrangian frequency–Eulerian wave-
number spectrum. The spectra of vertical velocity and vorticity are denoted by Φζ
and Φw , respectively. Spectra of the water’s motion have no superscript, i.e. Φ, while
those measured by a float have an F superscript, i.e. ΦF . Expressions for the vertical
velocity and vorticity spectra are

ΦFw(ω, k) = Φw(ω, k)Hw(k, L) = Φw(k)F(ω,ωk)Hw(k, L), (5.10)
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Figure 6. (a) Model frequency–wavenumber spectrum of vertical velocity for ε = 10−6 W kg−1. Inte-
grating the joint frequency–wavenumber spectrum over the frequency domain yields the wavenumber
spectrum (b) and integrating over the wavenumber domain yields the frequency spectrum (c).

and

ΦFζ (ω, k) = Φζ(ω, k)Hζ(k, R) = Φζ(k)F(ω,ωk)Hζ(k, R). (5.11)

Each wavenumber–frequency spectrum is the product of a wavenumber spectrum,
the spreading function, F , and, for the float spectra, an instrument response function,
H .

A contour plot of the frequency–wavenumber spectrum (5.10) of vertical velocity,
Φw , is shown in figure 6(a) for ε = 10−6 W kg−1 and k0 = 0.01 m−1. The frequency
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Figure 7. Normalized model Lagrangian frequency spectra of (a) vertical acceleration and (b)
vertical vorticity for different γ (solid lines) compared with the DFOD empirical spectrum (thick
dashed line) and the spectrum proposed by Tennekes & Lumley (1972).

bandwidth increases with wavenumber. Projection onto the wavenumber domain
reduces to the k−5/3 spectrum (figure 6b), and projection onto the frequency domain
yields a Lagrangian frequency spectrum that is white below the large-eddy frequency
and has an ω−2 form in the inertial subrange (figure 6c).

Multiplying the vertical velocity frequency spectrum by ω2 yields the vertical
acceleration spectrum. The forms of the vertical acceleration and vorticity spec-
tra, including float response functions, are expressed in spherical coordinates (kx =
k cos(φ)sin(λ), ky = k sin(φ)sin(λ), and kz = k cos(λ)) as

ΦFa (ω) = αεω2

∫ ∞
ω0

dωkω
−2
k F(ω,ωk)

{∫ π

0

dλ 3
4

sin3 λHw(ωk, ωL, λ)

}
, (5.12)

and

ΦFζ (ω) = α

∫ ∞
ω0

dωkωkF(ω,ωk)

{∫ π

0

dλ 3
4

sin3 λHζ(ωk, ωR, λ)

}
, (5.13)

where ω0 = ε1/3k
2/3
0 is the large-eddy frequency corresponding to the large-eddy

wavenumber k0 in (1.1). The terms in the curly brackets represent instrumental effects
and are equal to 1 for point measurements.

Model Lagrangian frequency spectra of vertical acceleration non-dimensionalized
by ‘float-size’ scaling are shown in figure 7(a) for different values of γ. Constant values
of γ0 = 1 and ω0/ωL = 0.01 are used. These are compared with the model spectrum
proposed by Tennekes & Lumley (1972) and the DFOD empirical spectrum. All
model spectra have a similar shape, but the level and roll-off frequency agree only
with the DFOD spectrum for γ near 1.

The shape of the model spectrum of vorticity is, in contrast to that of acceleration,
extremely sensitive to the bandwidth, γ (figure 7b). Model spectra for γ < 1 are blue
in the inertial subrange, as predicted by dimensional analysis which does not include
R. For γ > 1, model spectra are flat in the inertial subrange in agreement with the
observations. For γ = 1, the spectral level nearly matches the DFOD data fit, but the
shape of the high-frequency roll-off is wrong. For γ > 1, the spectral level is lower
than observed.

Overall, the model spectra agree best with the DFOD spectra for γ0 = 1 and
γ = 1. These values also yield a model acceleration spectrum that is blue below the
inertial subrange, as suggested by Tennekes & Lumley (1972) (1.2). We therefore use
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γ0 = γ = 1 for comparison with the data. The numerically computed model spectra
are accurately described by the following empirical analytical forms:

ΦFa (ω) = 1.8ε

[
1 +

(
2.2
ω0

ω

)4
]−0.5

[
1 +

(
0.63

ω

ωL

)2
]−0.8

, (5.14)

ΦFζ (ω) = 1.2ωR

[
1 +

(
0.22

ω

ωR

)1.5
]−4

. (5.15)

6. Observed and model spectra
6.1. Model fitting

We now do a more formal comparison of observed and modelled spectral shapes. The
model spectrum (5.14) is fitted to each observed acceleration spectrum, to estimate ε
and ω0 for that spectrum. The observed acceleration and vorticity spectra are scaled
by these parameters in order to determine whether the observed spectra have common
shapes and whether those shapes are consistent with the model.

Ideally, an estimate of ε should be made only in the float inertial subrange
ω0 � ω � ωL. However, in these data, ωL is at most a factor of 10 above ω0

and often less. There are not enough data in this limited spectral range to make
statistically reliable estimates of ε for each spectrum. Statistically reliable fits can be
made only by including frequencies near ωL. Our values of ε thus necessarily depend
on the assumed form of the float response function. Although we use the analytical
forms of the response function implicit in (5.14) and (5.15), these are consistent with
the data. The role of theory is therefore primarily to determine the dimensional form
of the float response, i.e. (4.2), and only secondarily to show that the observed shape
is consistent with a simple physical model.

For the model acceleration spectrum,

ω0 = εσ−2
w hσw , (6.1)

where σ2
w is the variance of vertical velocity, and hσw is the ratio between the vertical

velocity variance of the water and that of the float computed from the model
spectrum; ω0 is estimated using (6.1) for each spectrum. The model spectrum (5.14)
is fitted to the observed acceleration spectra shown in figure 3 by minimizing the
mean-square deviation between the model and the data as a function of ε. If ωnoise is
the frequency where the observed spectrum equals the instrumental digitization noise
spectrum, the minimization is done to include all spectral estimates up to 0.5 ωnoise.
Since the wavelet spectral estimators are logarithmically spaced, ωΦa, rather than Φa,
is fitted so as to weight each estimate by its degrees of freedom.

6.2. Acceleration

The observed acceleration spectra, non-dimensionalized using the ‘float-size’ scaling,
are shown in figure 8(b). Only spectral estimates with ω > 0.6ω0 are plotted. The
same spectra, non-dimensionalized using the ‘large-eddy’ scaling, are shown in figure
8(a). Only spectral estimates with ω < 0.2ωL are plotted. Also shown are composite
spectra (heavy lines), obtained by averaging the non-dimensional spectra. Shading
indicates 95% confidence limits computed assuming Gaussian statistics; the error bars
indicate 95% confidence limits computed using the bootstrap method (Efron & Gong
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Figure 8. Non-dimensionalized Lagrangian acceleration spectra. The spectra from figure 3 have
been non-dimensionalized using (a) the ‘large-eddy’ and (b) ‘float-size’ scaling. Data from tidal
channels are denoted by ◦, from convective-mixed layers by +, and from wind-driven mixed layers
by ×. The average of these data, the ‘composite spectrum’, is shown by the heavy curve. Confidence
levels (95%) are computed assuming Gaussian statistics (shading) and the bootstrap method (error
bars). Thin solid lines show the model spectra (5.14) for ωL/ω0=1, 3, 10, and 30.

1983). The two error estimates are similar, indicating that the wavelet coefficients
have an approximately Gaussian distribution. Scaling greatly reduces the variations
of the spectral levels (compare figures 3 and 8).

The composite spectra show a short float inertial subrange bounded at high (≈ ωL)
and low (≈ ω0) frequencies by regions with spectral slopes of about −2 and +2
respectively. In the float-size scaling the model and composite spectra agree very well,
except that the composite spectrum lies about 15% below the model spectrum in the
inertial subrange. This difference is marginally significant at best. In the large-eddy
scaling, significant universality is apparent even for frequencies well below ω0. Here,
the composite spectrum has a flatter slope than the model, rising significantly above
it at the lowest frequencies.

6.3. Vorticity

Figure 9 shows the vorticity spectra after non-dimensionalization using the float-
size and large-eddy scalings. There are no free parameters; the value of ε used in
the normalization is that estimated from the corresponding acceleration spectrum.
Nevertheless, the vorticity spectra collapse to a universal curve nearly as well as the
acceleration spectra do. This is clear evidence that ε and ω0 are the appropriate
scaling parameters.

The composite vorticity spectrum was estimated by averaging the non-dimensional
vorticity spectra. In figure 9(a), the large-eddy scaling, the composite and model
spectra are white, but the composite has a slightly higher level. In figure 9(b), float-
size scaling, the model and composite spectra agree in the inertial subrange, but
have different shapes in the instrumental roll-off region. Thus, although the vorticity
spectra scale as described by (4.4) and have a universal shape, Gζ , this shape is not
well predicted by (5.8). This is not surprising since the linear drag law used to derive
(5.8) is not very accurate.
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7. The Kolmogorov constants

The forgoing analysis contains no independent estimate of the Kolmogorov con-
stants βa and βζ since no independent estimates of ε were made. Using data from
a convective boundary layer (figure 2), ε can be estimated from the buoyancy flux
and Φa can be estimated from the floats. This will yield estimates of the Kolmogorov
constants.

A steady-state convectively driven ocean mixed layer with no surface wind, wave
breaking, mean shear or entrainment is governed by only two parameters: the (cooling)
surface buoyancy flux, Jb, and the layer depth, H . The buoyancy flux decays linearly
from Jb at the surface to 0 at H . The turbulence kinetic energy equation for the
boundary layer then reduces to a balance of production by buoyancy and dissipation,
or

Jb = ε, (7.1)

where Jb is the averaged buoyancy flux and ε is the average viscous dissipation rate
(Anis & Moum 1994). We will estimate Jb, and thus ε, by three independent methods
for a subset of the data in figure 2.

First, we estimate the buoyancy flux from the average rate of change of temperature,
dθ/dt. If all the temperature change is due to the surface flux,

Jbθ =
αθgH

2

dθ

dt
, (7.2)

where αθ is the thermal expansion rate of sea water. For a given trajectory, temperature
data are binned by depth, and the least-squares estimate of dθ/dt is found for each

depth. These dθ/dt values are averaged, excluding outlier values at the top and
bottom of the mixed layer. H is taken as the maximum depth of the float during the
trajectory.

Second, we estimate the average buoyancy flux from the average covariance of
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vertical velocity and temperature (Tennekes & Lumley 1972):

JbC1 =
gαθ

T

∫ T

0

w′θ′dt

(
H

2(H + z)

)
, (7.3)

where the integral is taken along a float trajectory. Integration by parts yields an
equivalent expression in the limit as T →∞:

JbC2 = −gαθ
T

∫ T

0

z′
dθ′

dt
dt

(
H

2(H + z)

)
. (7.4)

The values of JbC1 and JbC2 are different for finite T and more reliable values are
found by averaging them:

JbC = (JbC1 + JbC2)/2. (7.5)

If the float spends equal time at all depths in a mixed layer of depth H , then the
average of w′θ′ equals the temperature flux averaged over depth. In fact, the floats
were made slightly lighter than the water in order to keep them in the mixed layer.
They therefore spent somewhat more time in the upper part of the mixed layer. Since
the heat flux is larger in this region, the unequal depth distribution of the floats
biases the estimated heat flux. A correction was made by assuming a heat flux profile
decaying to zero at depth H . In this case the heat flux, averaged over depth, should
be corrected by the factor 1

2
H/(H + z) as in (7.3) and (7.4). Computationally, the

time series of z, w, θ, and dθ/dt are de-meaned and detrended in time and depth to
form the perturbation quantities. These data are passed through a maximal overlap
wavelet transform using Daubechies fourth-order wavelets (Press et al. 1988), and the
covariances are computed from the wavelet products. Wavelets with periods longer
than 5.5 hours are not included in the covariances, since they are poorly resolved and
well below the peak in the covariance spectrum.

Finally, we estimate the surface heat flux, Q0, from meteorological measurements
described by DFOD and find the average buoyancy flux,

JbQ =
gαθ

2ρCp
Q0, (7.6)

where ρCp is the specific heat of sea water and the factor of 2 converts surface flux
to depth-average flux. The fluxes are dominated by long-wave radiation and latent
heat. The best estimates of Q0 have bias errors of 10 Wm−2 (Hosom et al. 1995). We
undoubtedly do worse. It seems unlikely that the error in our estimates is less than
15%.

Estimates were made using MLF and meteorological measurements from 2200 to
0600 local time during five nights (nine float deployments) chosen to have very weak
surface winds (see figure 2) and nearly clear skies. The choice of this time period is
a compromise between having more than two mixed layer overturnings and allowing
the mixed layer to reach its equilibrium depth so that a steady state can be assumed.

Averaged over all float trajectories, Jbθ = 3.5 × 10−8 W kg−1, JbC = 3.2 ×
10−8 W kg−1 and JbQ = 2.7 × 10−8 W kg−1. JbQ and JbC differ by about 25%,

while the two float-based estimates, JbC and Jbθ , differ by 9%. The float-based esti-
mates have fewer sources of error than the meteorological estimates, but we cannot
otherwise show that they are more accurate. We will use Jb = (JbC + Jbθ)/2 to scale
the spectra. On all but one night, two floats were deployed; the average of the two
buoyancy flux estimates is used to scale both spectra. These estimates neglect buoy-
ancy due to salinization of the sea surface by evaporation. Based on the estimates
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Figure 10. Non-dimensional spectra of (a) acceleration and (b) vorticity for convective boundary
layer data. Heavy line shows model spectra. Light lines (dashed, dotted and solid) show the individual
spectra. Bars show the 95% confidence levels for individual spectra and include uncertainties in
both the spectral level and the value of ε. The uncertainty in the average spectrum is about 1/3 of
this. The dashed line in (a) shows the model spectrum assuming ω0 = 0. The intercept of this line
with the left-hand axis gives the value of the Kolmogorov constant βa; the corresponding intercept
in (b) gives βζ .

of latent heat flux, evaporation will increase the Jb by about 7% which is a small
correction compared to other errors. The statistical error in Jb for any given evening,
estimated from the average difference between JbC and Jbθ , is about 30%.

Figure 10(a) shows the non-dimensionalized acceleration spectra (light lines). Only
the float-size non-dimensionalization is shown, because ωL/ω0 is nearly the same for
all spectra. The model spectrum computed using an average ω0 is shown by the dark
line; the model spectrum computed with ω0 = 0 is shown by the dashed line. The
nine scaled acceleration spectra fall mostly within the 95% confidence limits of the
model, although some show systematic deviations at high frequency. The value of βa
is given by the level of the inertial subrange; it lies between 1 and 2.

Figure 10(b) similarly shows the non-dimensionalized vorticity spectra (light) and
model spectrum (heavy). The data fall below the model in the instrumental fall-off
region, as is also seen in figure 9. At low frequencies the data are more variable than
the expected error. The value of βζ is between about 0.6 and 1.8.

8. Float models
Two simplified models of the float behaviour are used in the foregoing analysis: the

float’s acceleration is the average of the water’s acceleration over the float’s length, and
the float’s spin rate is the average of the circulation over the drag screen. In reality,
the float consists of both elements, and undoubtedly influences the flow around it.
In figure 11 we explore the effects of different assumptions. Spectra are shown which
assume an infinitesimal float (‘Perfect sensor’), an average over the vertical length of
the float (‘Vertical average’), an average over the drag screen (‘Disk average’) and a
perfect spectral averaging (‘Top-hat cutoff’) in which the float responds perfectly to
motions below a fixed wavenumber and not at all to motions above that wavenumber.
The cutoff wavenumber was chosen so that the spectral level at low frequency agrees
with that of the other models. The composite acceleration spectrum from figure 8 is
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Figure 11. Normalized model spectra of (a) vertical acceleration and (b) vertical vorticity for various
models of the float response. Composite spectra from figures 8 and 9 are shown for reference (thick
solid lines).

shown for reference (‘Data composite’). Its level has been adjusted slightly to match
the model spectral level at low frequency. This is equivalent to changing the model
parameters slightly.

The acceleration spectra (figure 11a) are insensitive to the float model for frequen-
cies up to 2ωL. The ‘Vertical average’ and ‘Disk average’ spectra are very similar,
so that, given other uncertainties, it is impossible to say what linear combination
of them best fits the data. The highly unphysical ‘Top-hat’ model differs little from
these near ωL. Apparently, the spectral spreading function, F(ω,ωk), smooths all of
these spectra into approximately the same shape near ωL so their differences become
apparent only at higher frequencies. Because most of the variance in the accelera-
tion spectrum is near ωL, the estimation of ε from the acceleration spectra (§ 6.1) is
relatively insensitive to the details of the float response model.

In contrast, the vorticity spectrum (figure 11b) is quite sensitive to the float response
model. Because vorticity has a blue wavenumber spectrum, the vorticity variance, and
thus the spectral level, depends on the high-wavenumber cutoff, which is set by the
averaging scale of the float. In (4.4), the spectral level is proportional to ωR and
thus R2/3. Thus, in figure 11(b) the ‘Vertical average’ model leads to a very different
model spectrum at all frequencies than models which average vorticity (‘disk-average
vorticity’) or circulation (‘disk-average circulation’) over the drag disk. These produce
a spectrum with the proper spectral level, but a roll-off frequency slightly greater
than observed. The ‘top-hat’ cutoff model produces a spectrum similar to that of
disk-averaged vorticity and disk-averaged circulation but with a steeper slope at high
frequency. None of these simple models reproduces both the spectral level observed
at low frequencies and the instrumental roll-off observed at high frequencies. The
rotation rate of the float can apparently be modelled as a spatial average of vorticity
only for low frequencies. At frequencies greater than ωR the physics must be more
complex. This is also clear from the hydrodynamics; the frictional coupling between
the drag screen and the water is probably nonlinear and may well depend on the
imperfect water-following ability of the float. Thus, although the measured spectra of
float rotation rate at frequencies above ωL clearly scale with ε, their relationship to
the fluid vorticity is unclear.
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9. Discussion and summary

9.1. Inertial subranges

Ideally, the existence of the Lagrangian frequency inertial subrange should be estab-
lished by measuring the appropriate spectral slope over several decades in frequency
as described in the classic paper by Grant et al. (1962). The Kolmogorov constant
is then easily found from the spectral level in this frequency range. Our analysis
indicates that the part of the inertial subrange unaffected by float size is bounded
by approximately 2ω0 and ωL/2. These have a ratio of approximately (H/4L)2/3, or
about 3 for a 1 m float in a 50 m thick turbulent layer. To obtain a wider float inertial
subrange, either a smaller float, or a thicker turbulent layer would be required.

Here, an indirect approach has been used. Figures 8 and 9 establish that the
observed spectra scale only with ε at high frequencies (above ωL) and that the same
values of ε scale both acceleration and vorticity spectra. The non-dimensional spectral
shapes depend on the properties of the float. The dimensional arguments of § 4 and
plausible models for the wavenumber–frequency spectrum of turbulence (figure 6)
and float behaviour (5.5), results in a prediction of the spectral shapes (5.14). The
resulting model spectra agree with the measured acceleration spectra at all frequencies
(figure 8). Furthermore, the model spectra are insensitive to the details of the float
model (figure 11a). The effect of the float response to acceleration can therefore be
removed from measured acceleration spectra and an inertial subrange approximately
one decade wide can be measured. This is used to estimate the Kolmogorov constant
for acceleration in § 7.

The corresponding calculation for vorticity is less satisfactory, both because the
model vorticity spectrum does not agree with the observed spectrum except at low
frequency (figure 9) and because its shape is sensitive to the model details (figure 11b).
This is consistent with the weak physical basis for the linear relationship between
float spin rate and vorticity assumed in the model.

The Kolmogorov constant, βa = Φa/ε, is estimated to be between 1 and 2. This
is consistent with previous estimates if the likely factors of 2 and 2π are included.
Uncertainty in βa limits the accuracy of ε estimates made from acceleration spectra.
This limited accuracy is primarily due to statistical uncertainties, resulting from the
limited amount of data. We hope to remedy this soon.

9.2. The Eulerian–Lagrangian transformation

The Lagrangian frequency–Eulerian wavenumber spectrum (figure 6) is constructed
by spreading the energy at each Eulerian wavenumber over a range of frequencies
given by a spreading function, F(ω,ωk) (5.9). For γ = γ0 = 1, F is the sum of two
Gaussians (figure 5a, solid line). For γ0 = 0 a true Gaussian shape is found (figure
5a, dashed line). For various values of γ and γ0 different spectral shapes and different
values of βa are predicted.

The data constrain γ and γ0. Reasonable agreements in spectral shape and Kol-
mogorov constant are obtained only for γ0 < 1.3 and 0.9 < γ < 1.7. Note that γ0

may be zero, i.e. we cannot determine if F is better described by a single or double
Gaussian. Other forms for F are also satisfactory: algebraic functions similar in shape
to a Gaussian or the sum of two squared or square-rooted Gaussians produce spectral
shapes for the vorticity and acceleration spectra very similar to those shown here.
The data appear to constrain only the approximate width of the energy spreading
function and support the proposed dependence on ε and κ.



Lagrangian spectra of oceanic turbulence 197

9.3. Lagrangian spectral shapes

The model used here provides a simple explanation for the shapes of Lagrangian
frequency spectra. Energy at Eulerian wavenumber k is spread uniformly over La-
grangian frequencies less than ωk , but little energy is spread to frequencies larger than
2ωk (figure 5a). Since most of its variance in vorticity is at high wavenumbers, the
Lagrangian frequency spectrum of vorticity is white. The spectral level is determined
by the highest wavenumber in the spectrum, either the Kolmogorov or float scale.
Similarly, the spectrum of vertical velocity wavenumber has peak at the large-eddy
wavenumber k0, so the Lagrangian frequency spectrum of vertical velocity is white
below the large-eddy frequency ω0. Above the large-eddy wavenumber, the vertical
velocity spectrum is red, so the spreading to higher frequencies is weak and can be
ignored. Accordingly, the Lagrangian frequency spectrum can be derived by equating
the energy near Eulerian wavenumber k to that near Lagrangian frequency ωk . The
acceleration spectrum in the inertial subrange is thus insensitive to the shape of the
spreading function (figure 7) as well as to the float response function.

9.4. Universality of the spectral shapes

The data presented here clearly show that spectra of Lagrangian acceleration and
vorticity in oceanic boundary layers tend to have universal forms when properly
scaled, even at low frequencies. The spectra appear to be accurately parameterized by
models with only two parameters, ω0 and ε. This may serve as a partial justification
for using two-equation turbulence models based on near-equilibrium dynamics to
predict the behaviour of oceanic boundary layers.
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Office of Naval Research grant N00014-94-J-0024 and National Science Foundation
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